Nuprl Definition : uniform-extension-fun

uniform-extension-fun{i:l}(Gamma;A;ext) ==
  ∀H,K:CubicalSet. ∀tau:K ⟶ H. ∀sigma:H ⟶ Gamma. ∀phi:{H ⊢ _:𝔽}. ∀u:{H, phi ⊢ _:(A)sigma}.
    ((ext sigma phi u)tau (ext sigma tau (phi)tau (u)tau) ∈ {K ⊢ _:((A)sigma)tau[(phi)tau |⟶ (u)tau]})



Definitions occuring in Statement :  constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s csm-comp: F cube_set_map: A ⟶ B cubical_set: CubicalSet all: x:A. B[x] apply: a equal: t ∈ T
Definitions occuring in definition :  cubical_set: CubicalSet cube_set_map: A ⟶ B face-type: 𝔽 all: x:A. B[x] cubical-term: {X ⊢ _:A} context-subset: Gamma, phi equal: t ∈ T constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} csm-ap-type: (AF)s apply: a csm-comp: F csm-ap-term: (t)s
FDL editor aliases :  uniform-extension-fun

Latex:
uniform-extension-fun\{i:l\}(Gamma;A;ext)  ==
    \mforall{}H,K:CubicalSet.  \mforall{}tau:K  {}\mrightarrow{}  H.  \mforall{}sigma:H  {}\mrightarrow{}  Gamma.  \mforall{}phi:\{H  \mvdash{}  \_:\mBbbF{}\}.  \mforall{}u:\{H,  phi  \mvdash{}  \_:(A)sigma\}.
        ((ext  H  sigma  phi  u)tau  =  (ext  K  sigma  o  tau  (phi)tau  (u)tau))



Date html generated: 2017_02_21-AM-10_56_56
Last ObjectModification: 2017_01_20-PM-05_50_59

Theory : cubical!type!theory


Home Index