Nuprl Definition : univ-meaning

univ-meaning{i:l}(n) ==
  OK(if (n =z 0) then cttType(levl= 1type= c𝕌comp= compU())
  if (n =z 1) then cttType(levl= 2type= c𝕌'comp= compU())
  else cttType(levl= 3
               type= c𝕌''
               comp= compU())
  fi )



Definitions occuring in Statement :  mk_ctt-type-mng: mk_ctt-type-mng compU: compU() cubical-universe: c𝕌 ifthenelse: if then else fi  eq_int: (i =z j) true: True natural_number: $n provision: provision(ok; v)
Definitions occuring in definition :  provision: Error :provision,  true: True ifthenelse: if then else fi  eq_int: (i =z j) mk_ctt-type-mng: mk_ctt-type-mng natural_number: $n cubical-universe: c𝕌 compU: compU()

Latex:
univ-meaning\{i:l\}(n)  ==
    OK(if  (n  =\msubz{}  0)  then  cttType(levl=  1type=  c\mBbbU{}comp=  compU())
    if  (n  =\msubz{}  1)  then  cttType(levl=  2type=  c\mBbbU{}'comp=  compU())
    else  cttType(levl=  3
                              type=  c\mBbbU{}''
                              comp=  compU())
    fi  )



Date html generated: 2020_05_21-AM-10_45_38
Last ObjectModification: 2020_05_05-PM-00_18_13

Theory : cubical!type!theory


Home Index