Nuprl Definition : eu-cong-angle

abc xyz ==
  (a b ∈ Point))
  ∧ (c b ∈ Point))
  ∧ (x y ∈ Point))
  ∧ (z y ∈ Point))
  ∧ (∃a',c',x',z':Point. (b_a_a' ∧ b_c_c' ∧ y_x_x' ∧ y_z_z' ∧ ba'=yx' ∧ bc'=yz' ∧ a'c'=x'z'))



Definitions occuring in Statement :  eu-between-eq: a_b_c eu-congruent: ab=cd eu-point: Point exists: x:A. B[x] not: ¬A and: P ∧ Q equal: t ∈ T
Definitions occuring in definition :  not: ¬A equal: t ∈ T exists: x:A. B[x] eu-point: Point eu-between-eq: a_b_c and: P ∧ Q eu-congruent: ab=cd
FDL editor aliases :  eu-conga

Latex:
abc  =  xyz  ==
    (\mneg{}(a  =  b))
    \mwedge{}  (\mneg{}(c  =  b))
    \mwedge{}  (\mneg{}(x  =  y))
    \mwedge{}  (\mneg{}(z  =  y))
    \mwedge{}  (\mexists{}a',c',x',z':Point.  (b\_a\_a'  \mwedge{}  b\_c\_c'  \mwedge{}  y\_x\_x'  \mwedge{}  y\_z\_z'  \mwedge{}  ba'=yx'  \mwedge{}  bc'=yz'  \mwedge{}  a'c'=x'z'))



Date html generated: 2016_06_16-PM-01_31_55
Last ObjectModification: 2016_05_20-PM-02_09_20

Theory : euclidean!geometry


Home Index