Nuprl Definition : eu-le-pt

eu-le-pt(e;a;b;c;d) ==  ∃y:Point. (c_y_d ∧ ab=cy)



Definitions occuring in Statement :  eu-between-eq: a_b_c eu-congruent: ab=cd eu-point: Point exists: x:A. B[x] and: P ∧ Q
Definitions occuring in definition :  exists: x:A. B[x] eu-point: Point and: P ∧ Q eu-between-eq: a_b_c eu-congruent: ab=cd
FDL editor aliases :  eu-le-pt

Latex:
eu-le-pt(e;a;b;c;d)  ==    \mexists{}y:Point.  (c\_y\_d  \mwedge{}  ab=cy)



Date html generated: 2016_05_18-AM-06_43_26
Last ObjectModification: 2016_01_16-AM-11_44_21

Theory : euclidean!geometry


Home Index