Nuprl Definition : eu-le-pt
eu-le-pt(e;a;b;c;d) ==  ∃y:Point. (c_y_d ∧ ab=cy)
Definitions occuring in Statement : 
eu-between-eq: a_b_c
, 
eu-congruent: ab=cd
, 
eu-point: Point
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
Definitions occuring in definition : 
exists: ∃x:A. B[x]
, 
eu-point: Point
, 
and: P ∧ Q
, 
eu-between-eq: a_b_c
, 
eu-congruent: ab=cd
FDL editor aliases : 
eu-le-pt
Latex:
eu-le-pt(e;a;b;c;d)  ==    \mexists{}y:Point.  (c\_y\_d  \mwedge{}  ab=cy)
Date html generated:
2016_05_18-AM-06_43_26
Last ObjectModification:
2016_01_16-AM-11_44_21
Theory : euclidean!geometry
Home
Index