Nuprl Definition : eu-perp-in
Perp-in(x; ab; cd) ==
  Colinear(a;b;x) ∧ Colinear(c;d;x) ∧ (∀u,v:Point.  (Colinear(a;b;u) ⇒ Colinear(c;d;v) ⇒ Per(u;x;v)))
Definitions occuring in Statement : 
eu-perpendicular: Per(a;b;c), 
eu-colinear: Colinear(a;b;c), 
eu-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions occuring in definition : 
and: P ∧ Q, 
all: ∀x:A. B[x], 
eu-point: Point, 
implies: P ⇒ Q, 
eu-colinear: Colinear(a;b;c), 
eu-perpendicular: Per(a;b;c)
FDL editor aliases : 
eu-perp-in
Latex:
Perp-in(x;  ab;  cd)  ==
    Colinear(a;b;x)
    \mwedge{}  Colinear(c;d;x)
    \mwedge{}  (\mforall{}u,v:Point.    (Colinear(a;b;u)  {}\mRightarrow{}  Colinear(c;d;v)  {}\mRightarrow{}  Per(u;x;v)))
Date html generated:
2016_05_18-AM-06_43_14
Last ObjectModification:
2015_12_25-PM-04_13_09
Theory : euclidean!geometry
Home
Index