Nuprl Definition : eu-perp-in

Perp-in(x; ab; cd) ==
  Colinear(a;b;x) ∧ Colinear(c;d;x) ∧ (∀u,v:Point.  (Colinear(a;b;u)  Colinear(c;d;v)  Per(u;x;v)))



Definitions occuring in Statement :  eu-perpendicular: Per(a;b;c) eu-colinear: Colinear(a;b;c) eu-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions occuring in definition :  and: P ∧ Q all: x:A. B[x] eu-point: Point implies:  Q eu-colinear: Colinear(a;b;c) eu-perpendicular: Per(a;b;c)
FDL editor aliases :  eu-perp-in

Latex:
Perp-in(x;  ab;  cd)  ==
    Colinear(a;b;x)
    \mwedge{}  Colinear(c;d;x)
    \mwedge{}  (\mforall{}u,v:Point.    (Colinear(a;b;u)  {}\mRightarrow{}  Colinear(c;d;v)  {}\mRightarrow{}  Per(u;x;v)))



Date html generated: 2016_05_18-AM-06_43_14
Last ObjectModification: 2015_12_25-PM-04_13_09

Theory : euclidean!geometry


Home Index