Nuprl Lemma : Dsep-iff-sep

e:EuclideanPlane. ∀a,b:Point.  (Dsep(e;a;b) ⇐⇒ b)


Proof




Definitions occuring in Statement :  dist-sep: Dsep(g;a;b) euclidean-plane: EuclideanPlane geo-sep: b geo-point: Point all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: rev_implies:  Q dist-sep: Dsep(g;a;b) subtype_rel: A ⊆B guard: {T} uimplies: supposing a basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane squash: T true: True

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b:Point.    (Dsep(e;a;b)  \mLeftarrow{}{}\mRightarrow{}  a  \#  b)



Date html generated: 2020_05_20-AM-10_49_09
Last ObjectModification: 2020_01_13-PM-06_32_35

Theory : euclidean!plane!geometry


Home Index