Nuprl Lemma : Euclid-Prop21

g:EuclideanPlane. ∀a,b,c,d:Point.  (I(abc;d)  {|cd| |bd| < |ba| |ac| ∧ bac < bdc})


Proof




Definitions occuring in Statement :  geo-interior-point: I(abc;d) geo-lt-angle: abc < xyz geo-lt: p < q geo-add-length: q geo-length: |s| geo-mk-seg: ab euclidean-plane: EuclideanPlane geo-point: Point guard: {T} all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a geo-interior-point: I(abc;d) and: P ∧ Q exists: x:A. B[x] geo-strict-between: a-b-c cand: c∧ B basic-geometry-: BasicGeometry- euclidean-plane: EuclideanPlane iff: ⇐⇒ Q rev_implies:  Q not: ¬A false: False subtract: m cons: [a b] select: L[n] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) lelt: i ≤ j < k int_seg: {i..j-} top: Top l_all: (∀x∈L.P[x]) geo-colinear-set: geo-colinear-set(e; L) basic-geometry: BasicGeometry oriented-plane: OrientedPlane geo-lsep: bc squash: T true: True geo-zero-length: 0 geo-length-type: Length so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (I(abc;d)  {}\mRightarrow{}  \{|cd|  +  |bd|  <  |ba|  +  |ac|  \mwedge{}  bac  <  bdc\})



Date html generated: 2020_05_20-AM-10_39_20
Last ObjectModification: 2020_01_13-PM-04_53_02

Theory : euclidean!plane!geometry


Home Index