Nuprl Lemma : Euclid-Prop21
∀g:EuclideanPlane. ∀a,b,c,d:Point.  (I(abc;d) 
⇒ {|cd| + |bd| < |ba| + |ac| ∧ bac < bdc})
Proof
Definitions occuring in Statement : 
geo-interior-point: I(abc;d)
, 
geo-lt-angle: abc < xyz
, 
geo-lt: p < q
, 
geo-add-length: p + q
, 
geo-length: |s|
, 
geo-mk-seg: ab
, 
euclidean-plane: EuclideanPlane
, 
geo-point: Point
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
geo-interior-point: I(abc;d)
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
geo-strict-between: a-b-c
, 
cand: A c∧ B
, 
basic-geometry-: BasicGeometry-
, 
euclidean-plane: EuclideanPlane
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
false: False
, 
subtract: n - m
, 
cons: [a / b]
, 
select: L[n]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
top: Top
, 
l_all: (∀x∈L.P[x])
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
basic-geometry: BasicGeometry
, 
oriented-plane: OrientedPlane
, 
geo-lsep: a # bc
, 
squash: ↓T
, 
true: True
, 
geo-zero-length: 0
, 
geo-length-type: Length
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (I(abc;d)  {}\mRightarrow{}  \{|cd|  +  |bd|  <  |ba|  +  |ac|  \mwedge{}  bac  <  bdc\})
Date html generated:
2020_05_20-AM-10_39_20
Last ObjectModification:
2020_01_13-PM-04_53_02
Theory : euclidean!plane!geometry
Home
Index