Nuprl Lemma : Euclid-Prop22

e:EuclideanPlane. ∀a1,a2,b1,b2,c1,c2:Point.
  (|a1a2| < |b1b2| |c1c2|
   |b1b2| < |a1a2| |c1c2|
   |c1c2| < |a1a2| |b1b2|
   (∃a,b,c:Point. (((a bc ∧ ab ≅ a1a2) ∧ bc ≅ b1b2) ∧ ca ≅ c1c2)))


Proof




Definitions occuring in Statement :  geo-lt: p < q geo-add-length: q geo-length: |s| geo-mk-seg: ab euclidean-plane: EuclideanPlane geo-congruent: ab ≅ cd geo-lsep: bc geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T basic-geometry: BasicGeometry squash: T uall: [x:A]. B[x] prop: euclidean-plane: EuclideanPlane true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q cand: c∧ B exists: x:A. B[x] uiff: uiff(P;Q) basic-geometry-: BasicGeometry- geo-strict-between: a-b-c or: P ∨ Q l_member: (x ∈ l) nat: le: A ≤ B less_than': less_than'(a;b) not: ¬A false: False select: L[n] cons: [a b] subtract: m less_than: a < b ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) append: as bs so_lambda: so_lambda3 so_apply: x[s1;s2;s3] geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k geo-eq: a ≡ b

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a1,a2,b1,b2,c1,c2:Point.
    (|a1a2|  <  |b1b2|  +  |c1c2|
    {}\mRightarrow{}  |b1b2|  <  |a1a2|  +  |c1c2|
    {}\mRightarrow{}  |c1c2|  <  |a1a2|  +  |b1b2|
    {}\mRightarrow{}  (\mexists{}a,b,c:Point.  (((a  \#  bc  \mwedge{}  ab  \mcong{}  a1a2)  \mwedge{}  bc  \mcong{}  b1b2)  \mwedge{}  ca  \mcong{}  c1c2)))



Date html generated: 2020_05_20-AM-10_39_49
Last ObjectModification: 2020_01_28-AM-10_06_49

Theory : euclidean!plane!geometry


Home Index