Nuprl Lemma : Euclid-Prop31

e:EuclideanPlane. ∀a,b,x:Point.  (a  ab  (∃y:Point. geo-parallel-points(e;a;b;x;y)))


Proof




Definitions occuring in Statement :  geo-parallel-points: geo-parallel-points(e;a;b;c;d) euclidean-plane: EuclideanPlane geo-lsep: bc geo-sep: b geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B prop: exists: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q basic-geometry: BasicGeometry guard: {T} uimplies: supposing a euclidean-plane: EuclideanPlane cand: c∧ B sq_stable: SqStable(P) squash: T iff: ⇐⇒ Q rev_implies:  Q not: ¬A geo-perp-in: ab  ⊥cd basic-geometry-: BasicGeometry- l_member: (x ∈ l) nat: le: A ≤ B less_than': less_than'(a;b) false: False select: L[n] cons: [a b] less_than: a < b true: True ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) subtract: m append: as bs so_lambda: so_lambda3 so_apply: x[s1;s2;s3] geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k geo-eq: a ≡ b

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,x:Point.    (a  \#  b  {}\mRightarrow{}  x  \#  ab  {}\mRightarrow{}  (\mexists{}y:Point.  geo-parallel-points(e;a;b;x;y)))



Date html generated: 2020_05_20-AM-10_43_31
Last ObjectModification: 2020_01_13-PM-10_28_13

Theory : euclidean!plane!geometry


Home Index