Nuprl Lemma : Euclid-Prop7-aux

e:EuclideanPlane. ∀a,b:Point. ∀c,d:{p:Point| ¬leftof ba} .  (a  ac ≅ ad  bc ≅ bd  c ≡ d)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-eq: a ≡ b geo-congruent: ab ≅ cd geo-left: leftof bc geo-sep: b geo-point: Point all: x:A. B[x] not: ¬A implies:  Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q geo-eq: a ≡ b not: ¬A member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B prop: sq_exists: x:A [B[x]] false: False geo-midpoint: a=m=b and: P ∧ Q basic-geometry: BasicGeometry uiff: uiff(P;Q) uimplies: supposing a guard: {T} or: P ∨ Q stable: Stable{P} oriented-plane: OrientedPlane geo-colinear: Colinear(a;b;c) cand: c∧ B geo-lsep: bc iff: ⇐⇒ Q exists: x:A. B[x] l_member: (x ∈ l) nat: le: A ≤ B less_than': less_than'(a;b) top: Top select: L[n] cons: [a b] subtract: m less_than: a < b squash: T true: True ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) append: as bs so_lambda: so_lambda3 so_apply: x[s1;s2;s3] geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k rev_implies:  Q

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b:Point.  \mforall{}c,d:\{p:Point|  \mneg{}p  leftof  ba\}  .    (a  \#  b  {}\mRightarrow{}  ac  \mcong{}  ad  {}\mRightarrow{}  bc  \mcong{}  bd  {}\mRightarrow{}  c  \mequiv{}  d\000C)



Date html generated: 2020_05_20-AM-10_05_36
Last ObjectModification: 2019_12_03-AM-09_52_15

Theory : euclidean!plane!geometry


Home Index