Nuprl Lemma : Euclid-drop-perp-0

e:EuclideanPlane. ∀a:Point. ∀b:{b:Point| b} . ∀c:Point.
  ∃x:Point. (∃p:Point [(Colinear(p;x;c) ∧ ab  ⊥px ∧ ab ∧ c)])


Proof




Definitions occuring in Statement :  geo-perp-in: ab  ⊥cd euclidean-plane: EuclideanPlane geo-colinear: Colinear(a;b;c) geo-lsep: bc geo-sep: b geo-point: Point all: x:A. B[x] sq_exists: x:A [B[x]] exists: x:A. B[x] and: P ∧ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T euclidean-plane: EuclideanPlane sq_stable: SqStable(P) implies:  Q squash: T exists: x:A. B[x] and: P ∧ Q cand: c∧ B uall: [x:A]. B[x] geo-gt-prim: ab>cd record-select: r.x geo-sep: b subtype_rel: A ⊆B prop: guard: {T} oriented-plane: OrientedPlane l_member: (x ∈ l) nat: le: A ≤ B less_than': less_than'(a;b) not: ¬A false: False select: L[n] cons: [a b] less_than: a < b true: True uimplies: supposing a ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) subtract: m append: as bs so_lambda: so_lambda3 so_apply: x[s1;s2;s3] geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k sq_exists: x:A [B[x]] basic-geometry: BasicGeometry geo-midpoint: a=m=b basic-geometry-: BasicGeometry- uiff: uiff(P;Q) iff: ⇐⇒ Q geo-eq: a ≡ b geo-perp-in: ab  ⊥cd

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a:Point.  \mforall{}b:\{b:Point|  a  \#  b\}  .  \mforall{}c:Point.
    \mexists{}x:Point.  (\mexists{}p:Point  [(Colinear(p;x;c)  \mwedge{}  ab    \mbot{}p  px  \mwedge{}  x  \#  ab  \mwedge{}  x  \#  c)])



Date html generated: 2020_05_20-AM-10_04_10
Last ObjectModification: 2019_12_28-AM-08_24_36

Theory : euclidean!plane!geometry


Home Index