Nuprl Lemma : Euclid-midpoint-1

e:EuclideanPlane. ∀a:Point. ∀b:{b:Point| b} .  (∃d:Point [a=d=b])


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-midpoint: a=m=b geo-sep: b geo-point: Point all: x:A. B[x] sq_exists: x:A [B[x]] set: {x:A| B[x]} 
Definitions unfolded in proof :  prop: uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] exists: x:A. B[x] squash: T sq_stable: SqStable(P) euclidean-plane: EuclideanPlane implies:  Q and: P ∧ Q cand: c∧ B geo-gt-prim: ab>cd record-select: r.x geo-sep: b uiff: uiff(P;Q) basic-geometry: BasicGeometry false: False basic-geometry-: BasicGeometry- iff: ⇐⇒ Q true: True not: ¬A geo-eq: a ≡ b sq_exists: x:A [B[x]] geo-midpoint: a=m=b

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a:Point.  \mforall{}b:\{b:Point|  a  \#  b\}  .    (\mexists{}d:Point  [a=d=b])



Date html generated: 2020_05_20-AM-10_03_07
Last ObjectModification: 2019_12_26-PM-08_57_05

Theory : euclidean!plane!geometry


Home Index