Nuprl Lemma : Euclid-parallel-points-exists

e:EuclideanPlane. ∀a:Point. ∀b:{b:Point| b} . ∀p:Point.  ∃q:Point. geo-parallel-points(e;a;b;p;q)


Proof




Definitions occuring in Statement :  geo-parallel-points: geo-parallel-points(e;a;b;c;d) euclidean-plane: EuclideanPlane geo-sep: b geo-point: Point all: x:A. B[x] exists: x:A. B[x] set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T exists: x:A. B[x] sq_exists: x:A [B[x]] and: P ∧ Q uall: [x:A]. B[x] subtype_rel: A ⊆B prop: basic-geometry: BasicGeometry guard: {T} uimplies: supposing a euclidean-plane: EuclideanPlane cand: c∧ B implies:  Q sq_stable: SqStable(P) squash: T geo-parallel-points: geo-parallel-points(e;a;b;c;d) or: P ∨ Q not: ¬A false: False stable: Stable{P} geo-eq: a ≡ b uiff: uiff(P;Q) iff: ⇐⇒ Q geo-intersect-points: ab \/ cd geo-perp-in: ab  ⊥cd basic-geometry-: BasicGeometry- l_member: (x ∈ l) nat: le: A ≤ B less_than': less_than'(a;b) select: L[n] cons: [a b] less_than: a < b true: True ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) subtract: m append: as bs so_lambda: so_lambda3 so_apply: x[s1;s2;s3] geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k geo-colinear: Colinear(a;b;c)

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a:Point.  \mforall{}b:\{b:Point|  a  \#  b\}  .  \mforall{}p:Point.
    \mexists{}q:Point.  geo-parallel-points(e;a;b;p;q)



Date html generated: 2020_05_20-AM-10_46_46
Last ObjectModification: 2019_12_31-PM-09_48_58

Theory : euclidean!plane!geometry


Home Index