Nuprl Lemma : Euclid-prop16

g:EuclideanPlane. ∀a,b,c,d:Point.  (a bc  b-c-d  (cba < acd ∧ bac < acd))


Proof




Definitions occuring in Statement :  geo-lt-angle: abc < xyz euclidean-plane: EuclideanPlane geo-strict-between: a-b-c geo-lsep: bc geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q cand: c∧ B member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane exists: x:A. B[x] sq_stable: SqStable(P) geo-midpoint: a=m=b geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False select: L[n] cons: [a b] subtract: m squash: T basic-geometry-: BasicGeometry- geo-strict-between: a-b-c heyting-geometry: HeytingGeometry geo-triangle: bc geo-lsep: bc oriented-plane: OrientedPlane geo-lt-angle: abc < xyz sq_exists: x:A [B[x]] geo-out: out(p ab) le: A ≤ B less_than': less_than'(a;b) less_than: a < b true: True l_member: (x ∈ l) nat: ge: i ≥  append: as bs so_lambda: so_lambda3 so_apply: x[s1;s2;s3]

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (a  \#  bc  {}\mRightarrow{}  b-c-d  {}\mRightarrow{}  (cba  <  acd  \mwedge{}  bac  <  acd))



Date html generated: 2020_05_20-AM-10_37_58
Last ObjectModification: 2020_01_14-PM-03_06_50

Theory : euclidean!plane!geometry


Home Index