Nuprl Definition : PlayfairPP
PlayfairPP(eu) ==
  ∀a0,a1,b0,b1,c0,c1,p:Point.
    ((geo-parallel-points(eu;a0;a1;b0;b1) ∧ geo-parallel-points(eu;a0;a1;c0;c1))
    
⇒ (Colinear(p;b0;b1) ∧ Colinear(p;c0;c1))
    
⇒ (Colinear(c0;b0;b1) ∧ Colinear(c1;b0;b1)))
Definitions occuring in Statement : 
geo-parallel-points: geo-parallel-points(e;a;b;c;d)
, 
geo-colinear: Colinear(a;b;c)
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions occuring in definition : 
all: ∀x:A. B[x]
, 
geo-point: Point
, 
geo-parallel-points: geo-parallel-points(e;a;b;c;d)
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
geo-colinear: Colinear(a;b;c)
FDL editor aliases : 
PlayfairPP
Latex:
PlayfairPP(eu)  ==
    \mforall{}a0,a1,b0,b1,c0,c1,p:Point.
        ((geo-parallel-points(eu;a0;a1;b0;b1)  \mwedge{}  geo-parallel-points(eu;a0;a1;c0;c1))
        {}\mRightarrow{}  (Colinear(p;b0;b1)  \mwedge{}  Colinear(p;c0;c1))
        {}\mRightarrow{}  (Colinear(c0;b0;b1)  \mwedge{}  Colinear(c1;b0;b1)))
Date html generated:
2019_10_16-PM-01_47_55
Last ObjectModification:
2019_06_19-PM-01_47_33
Theory : euclidean!plane!geometry
Home
Index