Nuprl Lemma : Prop22-inequality-implies-triangle
∀e:EuclideanPlane. ∀a,b,c:Point.  (|ac| < |ab| + |bc| ⇒ |ab| < |ac| + |bc| ⇒ |bc| < |ac| + |ab| ⇒ a # bc)
Proof
Definitions occuring in Statement : 
geo-lt: p < q, 
geo-add-length: p + q, 
geo-length: |s|, 
geo-mk-seg: ab, 
euclidean-plane: EuclideanPlane, 
geo-lsep: a # bc, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
basic-geometry: BasicGeometry, 
euclidean-plane: EuclideanPlane, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
true: True, 
squash: ↓T, 
cand: A c∧ B, 
oriented-plane: OrientedPlane, 
or: P ∨ Q, 
false: False, 
not: ¬A, 
geo-eq: a ≡ b, 
stable: Stable{P}, 
geo-lsep: a # bc, 
uiff: uiff(P;Q), 
geo-strict-between: a-b-c, 
basic-geometry-: BasicGeometry-
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.
    (|ac|  <  |ab|  +  |bc|  {}\mRightarrow{}  |ab|  <  |ac|  +  |bc|  {}\mRightarrow{}  |bc|  <  |ac|  +  |ab|  {}\mRightarrow{}  a  \#  bc)
 Date html generated: 
2020_05_20-AM-10_40_10
 Last ObjectModification: 
2020_01_13-PM-05_11_14
Theory : euclidean!plane!geometry
Home
Index