Nuprl Lemma : Prop22-inequality-implies-triangle
∀e:EuclideanPlane. ∀a,b,c:Point.  (|ac| < |ab| + |bc| 
⇒ |ab| < |ac| + |bc| 
⇒ |bc| < |ac| + |ab| 
⇒ a # bc)
Proof
Definitions occuring in Statement : 
geo-lt: p < q
, 
geo-add-length: p + q
, 
geo-length: |s|
, 
geo-mk-seg: ab
, 
euclidean-plane: EuclideanPlane
, 
geo-lsep: a # bc
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
basic-geometry: BasicGeometry
, 
euclidean-plane: EuclideanPlane
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
squash: ↓T
, 
cand: A c∧ B
, 
oriented-plane: OrientedPlane
, 
or: P ∨ Q
, 
false: False
, 
not: ¬A
, 
geo-eq: a ≡ b
, 
stable: Stable{P}
, 
geo-lsep: a # bc
, 
uiff: uiff(P;Q)
, 
geo-strict-between: a-b-c
, 
basic-geometry-: BasicGeometry-
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.
    (|ac|  <  |ab|  +  |bc|  {}\mRightarrow{}  |ab|  <  |ac|  +  |bc|  {}\mRightarrow{}  |bc|  <  |ac|  +  |ab|  {}\mRightarrow{}  a  \#  bc)
Date html generated:
2020_05_20-AM-10_40_10
Last ObjectModification:
2020_01_13-PM-05_11_14
Theory : euclidean!plane!geometry
Home
Index