Nuprl Definition : TarskiPP

TarskiPP(e) ==  ∀a,b,c,d,t:Point.  (((a_d_t ∧ b_d_c) ∧ a ≠ d)  (∃x,y:Point. ((a_b_x ∧ a_c_y) ∧ x_t_y)))



Definitions occuring in Statement :  geo-between: a_b_c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions occuring in definition :  all: x:A. B[x] implies:  Q geo-sep: a ≠ b exists: x:A. B[x] geo-point: Point and: P ∧ Q geo-between: a_b_c
FDL editor aliases :  TarskiPP

Latex:
TarskiPP(e)  ==
    \mforall{}a,b,c,d,t:Point.    (((a\_d\_t  \mwedge{}  b\_d\_c)  \mwedge{}  a  \mneq{}  d)  {}\mRightarrow{}  (\mexists{}x,y:Point.  ((a\_b\_x  \mwedge{}  a\_c\_y)  \mwedge{}  x\_t\_y)))



Date html generated: 2018_05_22-PM-00_14_40
Last ObjectModification: 2018_01_10-PM-01_22_39

Theory : euclidean!plane!geometry


Home Index