Nuprl Lemma : basic-axioms-imply_between1

e:EuclideanPlaneStructure. (BasicGeometryAxioms(e)  (∀a1,a2,b,c:Point.  (a1 ≡ a2  B(a1bc)  B(a2bc))))


Proof




Definitions occuring in Statement :  euclidean-plane-structure: EuclideanPlaneStructure basic-geo-axioms: BasicGeometryAxioms(g) geo-eq: a ≡ b geo-between: B(abc) geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T and: P ∧ Q subtype_rel: A ⊆B basic-geo-axioms: BasicGeometryAxioms(g) uall: [x:A]. B[x] prop: geo-between: B(abc) cand: c∧ B not: ¬A geo-lsep: bc or: P ∨ Q false: False guard: {T} geo-sep: b geo-eq: a ≡ b geo-ge: ab ≥ cd geo-congruent: ab ≅ cd geo-length-sep: ab cd)

Latex:
\mforall{}e:EuclideanPlaneStructure
    (BasicGeometryAxioms(e)  {}\mRightarrow{}  (\mforall{}a1,a2,b,c:Point.    (a1  \mequiv{}  a2  {}\mRightarrow{}  B(a1bc)  {}\mRightarrow{}  B(a2bc))))



Date html generated: 2020_05_20-AM-09_43_13
Last ObjectModification: 2020_01_27-PM-10_46_12

Theory : euclidean!plane!geometry


Home Index