Nuprl Lemma : basic-axioms-imply_between1
∀e:EuclideanPlaneStructure. (BasicGeometryAxioms(e) 
⇒ (∀a1,a2,b,c:Point.  (a1 ≡ a2 
⇒ B(a1bc) 
⇒ B(a2bc))))
Proof
Definitions occuring in Statement : 
euclidean-plane-structure: EuclideanPlaneStructure
, 
basic-geo-axioms: BasicGeometryAxioms(g)
, 
geo-eq: a ≡ b
, 
geo-between: B(abc)
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
basic-geo-axioms: BasicGeometryAxioms(g)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
geo-between: B(abc)
, 
cand: A c∧ B
, 
not: ¬A
, 
geo-lsep: a # bc
, 
or: P ∨ Q
, 
false: False
, 
guard: {T}
, 
geo-sep: a # b
, 
geo-eq: a ≡ b
, 
geo-ge: ab ≥ cd
, 
geo-congruent: ab ≅ cd
, 
geo-length-sep: ab # cd)
Latex:
\mforall{}e:EuclideanPlaneStructure
    (BasicGeometryAxioms(e)  {}\mRightarrow{}  (\mforall{}a1,a2,b,c:Point.    (a1  \mequiv{}  a2  {}\mRightarrow{}  B(a1bc)  {}\mRightarrow{}  B(a2bc))))
Date html generated:
2020_05_20-AM-09_43_13
Last ObjectModification:
2020_01_27-PM-10_46_12
Theory : euclidean!plane!geometry
Home
Index