Nuprl Lemma : basic-axioms-imply_between2

e:EuclideanPlaneStructure. (BasicGeometryAxioms(e)  (∀a,b1,b2,c:Point.  (b1 ≡ b2  B(ab1c)  B(ab2c))))


Proof




Definitions occuring in Statement :  euclidean-plane-structure: EuclideanPlaneStructure basic-geo-axioms: BasicGeometryAxioms(g) geo-eq: a ≡ b geo-between: B(abc) geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T and: P ∧ Q subtype_rel: A ⊆B basic-geo-axioms: BasicGeometryAxioms(g) uall: [x:A]. B[x] prop: geo-between: B(abc) cand: c∧ B not: ¬A geo-lsep: bc or: P ∨ Q false: False geo-ge: ab ≥ cd guard: {T} geo-sep: b geo-eq: a ≡ b

Latex:
\mforall{}e:EuclideanPlaneStructure
    (BasicGeometryAxioms(e)  {}\mRightarrow{}  (\mforall{}a,b1,b2,c:Point.    (b1  \mequiv{}  b2  {}\mRightarrow{}  B(ab1c)  {}\mRightarrow{}  B(ab2c))))



Date html generated: 2020_05_20-AM-09_43_22
Last ObjectModification: 2020_01_27-PM-03_13_36

Theory : euclidean!plane!geometry


Home Index