Nuprl Lemma : basic-geo-axioms-imply

g:EuclideanPlaneStructure
  (BasicGeometryAxioms(g)  ((∀a:Point. a ≡ a) ∧ (∀a,b:Point.  ab ≅ ba) ∧ (∀a,b,c:Point.  (a ≡  ac ≅ bc))))


Proof




Definitions occuring in Statement :  euclidean-plane-structure: EuclideanPlaneStructure basic-geo-axioms: BasicGeometryAxioms(g) geo-eq: a ≡ b geo-congruent: ab ≅ cd geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q basic-geo-axioms: BasicGeometryAxioms(g) and: P ∧ Q cand: c∧ B member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B prop: geo-eq: a ≡ b not: ¬A geo-sep: b guard: {T} geo-ge: ab ≥ cd geo-congruent: ab ≅ cd geo-length-sep: ab cd) or: P ∨ Q false: False

Latex:
\mforall{}g:EuclideanPlaneStructure
    (BasicGeometryAxioms(g)
    {}\mRightarrow{}  ((\mforall{}a:Point.  a  \mequiv{}  a)  \mwedge{}  (\mforall{}a,b:Point.    ab  \mcong{}  ba)  \mwedge{}  (\mforall{}a,b,c:Point.    (a  \mequiv{}  b  {}\mRightarrow{}  ac  \mcong{}  bc))))



Date html generated: 2020_05_20-AM-09_43_03
Last ObjectModification: 2020_01_27-PM-10_38_10

Theory : euclidean!plane!geometry


Home Index