Nuprl Lemma : basic-geo-cong-preserves-gt-prim2
∀g:GeometryPrimitives. (BasicGeometryAxioms(g) 
⇒ (∀a,b,c,d,e,f:Point.  (ab>cd 
⇒ cd ≅ ef 
⇒ ab>ef)))
Proof
Definitions occuring in Statement : 
basic-geo-axioms: BasicGeometryAxioms(g)
, 
geo-congruent: ab ≅ cd
, 
geo-gt-prim: ab>cd
, 
geo-primitives: GeometryPrimitives
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
basic-geo-axioms: BasicGeometryAxioms(g)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
geo-ge: ab ≥ cd
, 
geo-congruent: ab ≅ cd
, 
geo-length-sep: ab # cd)
, 
not: ¬A
, 
or: P ∨ Q
Latex:
\mforall{}g:GeometryPrimitives
    (BasicGeometryAxioms(g)  {}\mRightarrow{}  (\mforall{}a,b,c,d,e,f:Point.    (ab>cd  {}\mRightarrow{}  cd  \mcong{}  ef  {}\mRightarrow{}  ab>ef)))
Date html generated:
2020_05_20-AM-09_41_34
Last ObjectModification:
2020_01_27-PM-10_36_48
Theory : euclidean!plane!geometry
Home
Index