Nuprl Lemma : basic-geo-not-left-and-right
∀g:EuclideanPlaneStructure. (BasicGeometryAxioms(g) 
⇒ (∀a,b,c:Point.  (a leftof bc 
⇒ (¬a leftof cb))))
Proof
Definitions occuring in Statement : 
euclidean-plane-structure: EuclideanPlaneStructure
, 
basic-geo-axioms: BasicGeometryAxioms(g)
, 
geo-left: a leftof bc
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
geo-eq: a ≡ b
, 
basic-geo-axioms: BasicGeometryAxioms(g)
, 
cand: A c∧ B
, 
geo-ge: ab ≥ cd
, 
guard: {T}
, 
geo-colinear: Colinear(a;b;c)
, 
geo-lsep: a # bc
, 
or: P ∨ Q
Latex:
\mforall{}g:EuclideanPlaneStructure
    (BasicGeometryAxioms(g)  {}\mRightarrow{}  (\mforall{}a,b,c:Point.    (a  leftof  bc  {}\mRightarrow{}  (\mneg{}a  leftof  cb))))
Date html generated:
2020_05_20-AM-09_42_50
Last ObjectModification:
2020_01_13-PM-02_50_27
Theory : euclidean!plane!geometry
Home
Index