Nuprl Lemma : colinear-implies-midpoint
∀e:BasicGeometry. ∀M,A,B:Point.  (A # B 
⇒ Colinear(A;M;B) 
⇒ MA ≅ MB 
⇒ A=M=B)
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry
, 
geo-midpoint: a=m=b
, 
geo-colinear: Colinear(a;b;c)
, 
geo-congruent: ab ≅ cd
, 
geo-sep: a # b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
geo-midpoint: a=m=b
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
basic-geometry: BasicGeometry
, 
euclidean-plane: EuclideanPlane
, 
basic-geometry-: BasicGeometry-
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
geo-strict-between: a-b-c
, 
not: ¬A
, 
false: False
, 
squash: ↓T
, 
true: True
, 
geo-zero-length: 0
, 
geo-eq: a ≡ b
Latex:
\mforall{}e:BasicGeometry.  \mforall{}M,A,B:Point.    (A  \#  B  {}\mRightarrow{}  Colinear(A;M;B)  {}\mRightarrow{}  MA  \mcong{}  MB  {}\mRightarrow{}  A=M=B)
Date html generated:
2020_05_20-AM-09_57_30
Last ObjectModification:
2020_01_13-PM-03_32_18
Theory : euclidean!plane!geometry
Home
Index