Nuprl Lemma : colinear-implies-midpoint
∀e:BasicGeometry. ∀M,A,B:Point.  (A # B ⇒ Colinear(A;M;B) ⇒ MA ≅ MB ⇒ A=M=B)
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry, 
geo-midpoint: a=m=b, 
geo-colinear: Colinear(a;b;c), 
geo-congruent: ab ≅ cd, 
geo-sep: a # b, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
geo-midpoint: a=m=b, 
and: P ∧ Q, 
uiff: uiff(P;Q), 
basic-geometry: BasicGeometry, 
euclidean-plane: EuclideanPlane, 
basic-geometry-: BasicGeometry-, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
geo-strict-between: a-b-c, 
not: ¬A, 
false: False, 
squash: ↓T, 
true: True, 
geo-zero-length: 0, 
geo-eq: a ≡ b
Latex:
\mforall{}e:BasicGeometry.  \mforall{}M,A,B:Point.    (A  \#  B  {}\mRightarrow{}  Colinear(A;M;B)  {}\mRightarrow{}  MA  \mcong{}  MB  {}\mRightarrow{}  A=M=B)
Date html generated:
2020_05_20-AM-09_57_30
Last ObjectModification:
2020_01_13-PM-03_32_18
Theory : euclidean!plane!geometry
Home
Index