Nuprl Lemma : colinear-implies-midpoint

e:BasicGeometry. ∀M,A,B:Point.  (A  Colinear(A;M;B)  MA ≅ MB  A=M=B)


Proof




Definitions occuring in Statement :  basic-geometry: BasicGeometry geo-midpoint: a=m=b geo-colinear: Colinear(a;b;c) geo-congruent: ab ≅ cd geo-sep: b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: geo-midpoint: a=m=b and: P ∧ Q uiff: uiff(P;Q) basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane basic-geometry-: BasicGeometry- iff: ⇐⇒ Q rev_implies:  Q geo-strict-between: a-b-c not: ¬A false: False squash: T true: True geo-zero-length: 0 geo-eq: a ≡ b

Latex:
\mforall{}e:BasicGeometry.  \mforall{}M,A,B:Point.    (A  \#  B  {}\mRightarrow{}  Colinear(A;M;B)  {}\mRightarrow{}  MA  \mcong{}  MB  {}\mRightarrow{}  A=M=B)



Date html generated: 2020_05_20-AM-09_57_30
Last ObjectModification: 2020_01_13-PM-03_32_18

Theory : euclidean!plane!geometry


Home Index