Nuprl Lemma : congruence-implies-between

e:EuclideanPlane
  ∀[a,b,c,d,A,B,C,D:Point].
    (B(ABC)) supposing 
       ((A   (A leftof BD ⇐⇒ leftof DB)) and 
       B(abc) and 
       and 
       bd ≅ BD and 
       ad ≅ AD and 
       cd ≅ CD and 
       bc ≅ BC and 
       ab ≅ AB)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-congruent: ab ≅ cd geo-between: B(abc) geo-left: leftof bc geo-sep: b geo-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a geo-between: B(abc) and: P ∧ Q not: ¬A implies:  Q false: False subtype_rel: A ⊆B guard: {T} prop: iff: ⇐⇒ Q rev_implies:  Q euclidean-plane: EuclideanPlane or: P ∨ Q stable: Stable{P} geo-eq: a ≡ b exists: x:A. B[x] cand: c∧ B basic-geometry: BasicGeometry uiff: uiff(P;Q) oriented-plane: OrientedPlane geo-lsep: bc

Latex:
\mforall{}e:EuclideanPlane
    \mforall{}[a,b,c,d,A,B,C,D:Point].
        (B(ABC))  supposing 
              ((A  \#  B  {}\mRightarrow{}  C  \#  B  {}\mRightarrow{}  (A  leftof  BD  \mLeftarrow{}{}\mRightarrow{}  C  leftof  DB))  and 
              B(abc)  and 
              d  \#  b  and 
              bd  \mcong{}  BD  and 
              ad  \mcong{}  AD  and 
              cd  \mcong{}  CD  and 
              bc  \mcong{}  BC  and 
              ab  \mcong{}  AB)



Date html generated: 2020_05_20-AM-10_07_45
Last ObjectModification: 2020_01_13-PM-04_07_30

Theory : euclidean!plane!geometry


Home Index