Nuprl Lemma : dist-lemma-lt
∀g:EuclideanPlane. ∀a,b,c,d,e,f:Point.  (D(a;b;c;d;e;f) 
⇒ |ef| < |ab| + |cd|)
Proof
Definitions occuring in Statement : 
dist: D(a;b;c;d;e;f)
, 
geo-lt: p < q
, 
geo-add-length: p + q
, 
geo-length: |s|
, 
geo-mk-seg: ab
, 
euclidean-plane: EuclideanPlane
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
geo-lt: p < q
, 
dist: D(a;b;c;d;e;f)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
euclidean-plane: EuclideanPlane
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
basic-geometry: BasicGeometry
, 
guard: {T}
, 
uimplies: b supposing a
, 
true: True
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d,e,f:Point.    (D(a;b;c;d;e;f)  {}\mRightarrow{}  |ef|  <  |ab|  +  |cd|)
Date html generated:
2020_05_20-AM-10_47_58
Last ObjectModification:
2020_01_13-PM-06_04_35
Theory : euclidean!plane!geometry
Home
Index