Nuprl Lemma : dist-lemma-lt

g:EuclideanPlane. ∀a,b,c,d,e,f:Point.  (D(a;b;c;d;e;f)  |ef| < |ab| |cd|)


Proof




Definitions occuring in Statement :  dist: D(a;b;c;d;e;f) geo-lt: p < q geo-add-length: q geo-length: |s| geo-mk-seg: ab euclidean-plane: EuclideanPlane geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T geo-lt: p < q dist: D(a;b;c;d;e;f) exists: x:A. B[x] and: P ∧ Q cand: c∧ B euclidean-plane: EuclideanPlane sq_stable: SqStable(P) squash: T uall: [x:A]. B[x] subtype_rel: A ⊆B prop: basic-geometry: BasicGeometry guard: {T} uimplies: supposing a true: True uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d,e,f:Point.    (D(a;b;c;d;e;f)  {}\mRightarrow{}  |ef|  <  |ab|  +  |cd|)



Date html generated: 2020_05_20-AM-10_47_58
Last ObjectModification: 2020_01_13-PM-06_04_35

Theory : euclidean!plane!geometry


Home Index