Nuprl Lemma : dist-to-gt
∀g:EuclideanPlane. ∀a,b,c,d:Point.  (D(a;b;b;b;c;d) 
⇒ ab > cd)
Proof
Definitions occuring in Statement : 
dist: D(a;b;c;d;e;f)
, 
euclidean-plane: EuclideanPlane
, 
geo-gt: cd > ab
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
euclidean-plane: EuclideanPlane
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
dist: D(a;b;c;d;e;f)
, 
geo-gt: cd > ab
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
squash: ↓T
, 
basic-geometry: BasicGeometry
, 
sq_stable: SqStable(P)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
cand: A c∧ B
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (D(a;b;b;b;c;d)  {}\mRightarrow{}  ab  >  cd)
Date html generated:
2020_05_20-AM-10_48_15
Last ObjectModification:
2020_01_13-PM-06_04_53
Theory : euclidean!plane!geometry
Home
Index