Nuprl Lemma : eu-eq_dist-axiomsA

g:EuclideanPlane. dist-axiomsA(g)


Proof




Definitions occuring in Statement :  dist-axiomsA: dist-axiomsA(g) euclidean-plane: EuclideanPlane all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] dist-axiomsA: dist-axiomsA(g) member: t ∈ T uall: [x:A]. B[x] euclidean-plane: EuclideanPlane prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a and: P ∧ Q not: ¬A implies:  Q false: False so_apply: x[s] so_lambda: λ2x.t[x] cand: c∧ B exists: x:A. B[x] dist: D(a;b;c;d;e;f) uiff: uiff(P;Q) basic-geometry: BasicGeometry or: P ∨ Q stable: Stable{P} geo-eq: a ≡ b iff: ⇐⇒ Q rev_implies:  Q sq_stable: SqStable(P) squash: T true: True pi2: snd(t) geo-seg2: geo-seg2(s) geo-mk-seg: ab pi1: fst(t) geo-seg1: geo-seg1(s) geo-seg-congruent: geo-seg-congruent(e; s1; s2) geo-lt: p < q basic-geometry-: BasicGeometry- geo-strict-between: a-b-c sq_exists: x:A [B[x]] geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) select: L[n] cons: [a b] subtract: m oriented-plane: OrientedPlane geo-lsep: bc top: Top le: A ≤ B less_than': less_than'(a;b) less_than: a < b append: as bs so_lambda: so_lambda3 so_apply: x[s1;s2;s3]

Latex:
\mforall{}g:EuclideanPlane.  dist-axiomsA(g)



Date html generated: 2020_05_20-AM-10_50_29
Last ObjectModification: 2020_01_13-PM-09_42_56

Theory : euclidean!plane!geometry


Home Index