Nuprl Lemma : eu-eq_dist-axiomsB
∀g:EuclideanPlane. ((∀a,b,c:Point.  (a # bc 
⇒ |ac| < |ab| + |bc|)) 
⇒ dist-axiomsB(g))
Proof
Definitions occuring in Statement : 
dist-axiomsB: dist-axiomsB(g)
, 
geo-lt: p < q
, 
geo-add-length: p + q
, 
geo-length: |s|
, 
geo-mk-seg: ab
, 
euclidean-plane: EuclideanPlane
, 
geo-lsep: a # bc
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
dist-axiomsB: dist-axiomsB(g)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
prop: ℙ
, 
basic-geometry: BasicGeometry
, 
euclidean-plane: EuclideanPlane
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
basic-geometry-: BasicGeometry-
, 
dist: D(a;b;c;d;e;f)
, 
cand: A c∧ B
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
false: False
, 
or: P ∨ Q
, 
stable: Stable{P}
, 
uiff: uiff(P;Q)
, 
geo-eq: a ≡ b
, 
squash: ↓T
, 
true: True
, 
dist-tri: Dtri(g;a;b;c)
Latex:
\mforall{}g:EuclideanPlane.  ((\mforall{}a,b,c:Point.    (a  \#  bc  {}\mRightarrow{}  |ac|  <  |ab|  +  |bc|))  {}\mRightarrow{}  dist-axiomsB(g))
Date html generated:
2020_05_20-AM-10_49_29
Last ObjectModification:
2020_01_13-PM-06_35_20
Theory : euclidean!plane!geometry
Home
Index