Nuprl Lemma : eu-eq_dist-axiomsB

g:EuclideanPlane. ((∀a,b,c:Point.  (a bc  |ac| < |ab| |bc|))  dist-axiomsB(g))


Proof




Definitions occuring in Statement :  dist-axiomsB: dist-axiomsB(g) geo-lt: p < q geo-add-length: q geo-length: |s| geo-mk-seg: ab euclidean-plane: EuclideanPlane geo-lsep: bc geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q dist-axiomsB: dist-axiomsB(g) member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q basic-geometry-: BasicGeometry- dist: D(a;b;c;d;e;f) cand: c∧ B exists: x:A. B[x] not: ¬A false: False or: P ∨ Q stable: Stable{P} uiff: uiff(P;Q) geo-eq: a ≡ b squash: T true: True dist-tri: Dtri(g;a;b;c)

Latex:
\mforall{}g:EuclideanPlane.  ((\mforall{}a,b,c:Point.    (a  \#  bc  {}\mRightarrow{}  |ac|  <  |ab|  +  |bc|))  {}\mRightarrow{}  dist-axiomsB(g))



Date html generated: 2020_05_20-AM-10_49_29
Last ObjectModification: 2020_01_13-PM-06_35_20

Theory : euclidean!plane!geometry


Home Index