Nuprl Lemma : euclidean-plane-structure_wf
EuclideanPlaneStructure ∈ 𝕌'
Proof
Definitions occuring in Statement : 
euclidean-plane-structure: EuclideanPlaneStructure
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
euclidean-plane-structure: EuclideanPlaneStructure
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
record+: record+, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
Latex:
EuclideanPlaneStructure  \mmember{}  \mBbbU{}'
Date html generated:
2020_05_20-AM-09_42_31
Last ObjectModification:
2020_01_22-PM-02_39_31
Theory : euclidean!plane!geometry
Home
Index