Nuprl Lemma : full-Pasch-lemma

e:EuclideanPlane. ∀a,x,y,d,p:Point.
  ((((d leftof xa ∧ x-p-a) ∧ py) ∧ leftof xy)  (∃p':Point. ((x-p'-y ∨ a-p'-y) ∧ Colinear(d;p;p'))))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-colinear: Colinear(a;b;c) geo-strict-between: a-b-c geo-lsep: bc geo-left: leftof bc geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q
Definitions unfolded in proof :  prop: uimplies: supposing a guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q implies:  Q all: x:A. B[x] exists: x:A. B[x] euclidean-plane: EuclideanPlane or: P ∨ Q geo-lsep: bc subtract: m cons: [a b] select: L[n] true: True squash: T less_than: a < b not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} top: Top l_all: (∀x∈L.P[x]) geo-colinear-set: geo-colinear-set(e; L) cand: c∧ B satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) geo-strict-between: a-b-c basic-geometry-: BasicGeometry- so_apply: x[s1;s2;s3] so_lambda: so_lambda3 append: as bs basic-geometry: BasicGeometry rev_implies:  Q iff: ⇐⇒ Q oriented-plane: OrientedPlane sq_exists: x:A [B[x]] sq_stable: SqStable(P)

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,x,y,d,p:Point.
    ((((d  leftof  xa  \mwedge{}  x-p-a)  \mwedge{}  d  \#  py)  \mwedge{}  a  leftof  xy)
    {}\mRightarrow{}  (\mexists{}p':Point.  ((x-p'-y  \mvee{}  a-p'-y)  \mwedge{}  Colinear(d;p;p'))))



Date html generated: 2020_05_20-AM-10_01_49
Last ObjectModification: 2019_12_26-PM-08_57_49

Theory : euclidean!plane!geometry


Home Index