Nuprl Lemma : geo-5segSAS
∀e:BasicGeometry. ∀a,b,c,f,g,A,B,C,F,G:Point.
  (af ≅ AF ∧ fb ≅ FB ∧ bc ≅ BC ∧ ag ≅ AG ∧ gc ≅ GC) 
⇒ fg ≅ FG supposing B(afb) ∧ B(agc) ∧ B(AFB) ∧ B(AGC)
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry
, 
geo-congruent: ab ≅ cd
, 
geo-between: B(abc)
, 
geo-point: Point
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
basic-geometry: BasicGeometry
, 
uall: ∀[x:A]. B[x]
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
guard: {T}
, 
geo-congruent: ab ≅ cd
, 
not: ¬A
, 
false: False
Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,f,g,A,B,C,F,G:Point.
    (af  \mcong{}  AF  \mwedge{}  fb  \mcong{}  FB  \mwedge{}  bc  \mcong{}  BC  \mwedge{}  ag  \mcong{}  AG  \mwedge{}  gc  \mcong{}  GC)  {}\mRightarrow{}  fg  \mcong{}  FG 
    supposing  B(afb)  \mwedge{}  B(agc)  \mwedge{}  B(AFB)  \mwedge{}  B(AGC)
Date html generated:
2020_05_20-AM-09_54_07
Last ObjectModification:
2019_12_23-AM-10_14_48
Theory : euclidean!plane!geometry
Home
Index