Nuprl Lemma : geo-CCL_wf

[g:EuclideanPlaneStructure]
  (BasicGeometryAxioms(g)
   (∀a,b:Point. ∀c:{c:Point| c} . ∀d:Point.
        CCL(a;b;c;d) ∈ {u:Point| ab ≅ au ∧ cd ≅ cu ∧ leftof ac}  supposing ∃p,q:Point. ((ab ≅ ap ∧ cd>cp) ∧ cd ≅ cq ∧ \000Cab>aq)))


Proof




Definitions occuring in Statement :  geo-CCL: CCL(a;b;c;d) euclidean-plane-structure: EuclideanPlaneStructure basic-geo-axioms: BasicGeometryAxioms(g) geo-congruent: ab ≅ cd geo-left: leftof bc geo-sep: b geo-gt-prim: ab>cd geo-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] uimplies: supposing a circle-strict-overlap: StrictOverlap(a;b;c;d) squash: T subtype_rel: A ⊆B geo-CCL: CCL(a;b;c;d) guard: {T} prop: exists: x:A. B[x] and: P ∧ Q

Latex:
\mforall{}[g:EuclideanPlaneStructure]
    (BasicGeometryAxioms(g)
    {}\mRightarrow{}  (\mforall{}a,b:Point.  \mforall{}c:\{c:Point|  a  \#  c\}  .  \mforall{}d:Point.
                CCL(a;b;c;d)  \mmember{}  \{u:Point|  ab  \mcong{}  au  \mwedge{}  cd  \mcong{}  cu  \mwedge{}  u  leftof  ac\}   
                supposing  \mexists{}p,q:Point.  ((ab  \mcong{}  ap  \mwedge{}  cd>cp)  \mwedge{}  cd  \mcong{}  cq  \mwedge{}  ab>aq)))



Date html generated: 2020_05_20-AM-09_43_50
Last ObjectModification: 2019_11_13-PM-02_16_16

Theory : euclidean!plane!geometry


Home Index