Nuprl Lemma : geo-CCR_wf

[g:EuclideanPlaneStructure]
  ∀a,b:Point. ∀c:{c:Point| a} . ∀d:Point.
    geo-CCR(g;a;b;c;d) ∈ {v:Point| ab ≅ av ∧ cd ≅ cv ∧ leftof ca}  supposing ∃p,q:Point. ((ab ≅ ap ∧ cd>cp) ∧ cd ≅ cq \000C∧ ab>aq)


Proof




Definitions occuring in Statement :  geo-CCR: geo-CCR(g;a;b;c;d) euclidean-plane-structure: EuclideanPlaneStructure geo-congruent: ab ≅ cd geo-left: leftof bc geo-sep: b geo-gt-prim: ab>cd geo-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] uimplies: supposing a geo-CCR: geo-CCR(g;a;b;c;d) exists: x:A. B[x] and: P ∧ Q circle-strict-overlap: StrictOverlap(a;b;c;d) cand: c∧ B subtype_rel: A ⊆B prop: squash: T

Latex:
\mforall{}[g:EuclideanPlaneStructure]
    \mforall{}a,b:Point.  \mforall{}c:\{c:Point|  c  \#  a\}  .  \mforall{}d:Point.
        geo-CCR(g;a;b;c;d)  \mmember{}  \{v:Point|  ab  \mcong{}  av  \mwedge{}  cd  \mcong{}  cv  \mwedge{}  v  leftof  ca\}   
        supposing  \mexists{}p,q:Point.  ((ab  \mcong{}  ap  \mwedge{}  cd>cp)  \mwedge{}  cd  \mcong{}  cq  \mwedge{}  ab>aq)



Date html generated: 2020_05_20-AM-09_43_55
Last ObjectModification: 2019_11_13-PM-02_05_33

Theory : euclidean!plane!geometry


Home Index