Nuprl Lemma : geo-CC_wf

[g:EuclideanPlaneStructure]. ∀[a,b:Point]. ∀[c:{c:Point| c} ]. ∀[d:{d:Point| StrictOverlap(a;b;c;d)} ].
  (CC(a;b;c;d) ∈ {u:Point| ab ≅ au ∧ cd ≅ cu ∧ leftof ac} )


Proof




Definitions occuring in Statement :  geo-CC: CC(a;b;c;d) euclidean-plane-structure: EuclideanPlaneStructure circle-strict-overlap: StrictOverlap(a;b;c;d) geo-congruent: ab ≅ cd geo-left: leftof bc geo-sep: b geo-point: Point uall: [x:A]. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T euclidean-plane-structure: EuclideanPlaneStructure record+: record+ record-select: r.x subtype_rel: A ⊆B eq_atom: =a y ifthenelse: if then else fi  btrue: tt all: x:A. B[x] prop: or: P ∨ Q exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] sq_exists: x:A [B[x]] and: P ∧ Q implies:  Q geo-CC: CC(a;b;c;d)

Latex:
\mforall{}[g:EuclideanPlaneStructure].  \mforall{}[a,b:Point].  \mforall{}[c:\{c:Point|  a  \#  c\}  ].  \mforall{}[d:\{d:Point| 
                                                                                                                                                StrictOverlap(a;b;c;d)\}  ].
    (CC(a;b;c;d)  \mmember{}  \{u:Point|  ab  \mcong{}  au  \mwedge{}  cd  \mcong{}  cu  \mwedge{}  u  leftof  ac\}  )



Date html generated: 2020_05_20-AM-09_43_39
Last ObjectModification: 2019_12_03-AM-09_53_19

Theory : euclidean!plane!geometry


Home Index