Nuprl Lemma : geo-CC_wf
∀[g:EuclideanPlaneStructure]. ∀[a,b:Point]. ∀[c:{c:Point| a # c} ]. ∀[d:{d:Point| StrictOverlap(a;b;c;d)} ].
(CC(a;b;c;d) ∈ {u:Point| ab ≅ au ∧ cd ≅ cu ∧ u leftof ac} )
Proof
Definitions occuring in Statement :
geo-CC: CC(a;b;c;d)
,
euclidean-plane-structure: EuclideanPlaneStructure
,
circle-strict-overlap: StrictOverlap(a;b;c;d)
,
geo-congruent: ab ≅ cd
,
geo-left: a leftof bc
,
geo-sep: a # b
,
geo-point: Point
,
uall: ∀[x:A]. B[x]
,
and: P ∧ Q
,
member: t ∈ T
,
set: {x:A| B[x]}
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
euclidean-plane-structure: EuclideanPlaneStructure
,
record+: record+,
record-select: r.x
,
subtype_rel: A ⊆r B
,
eq_atom: x =a y
,
ifthenelse: if b then t else f fi
,
btrue: tt
,
all: ∀x:A. B[x]
,
prop: ℙ
,
or: P ∨ Q
,
exists: ∃x:A. B[x]
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
sq_exists: ∃x:A [B[x]]
,
and: P ∧ Q
,
implies: P
⇒ Q
,
geo-CC: CC(a;b;c;d)
Latex:
\mforall{}[g:EuclideanPlaneStructure]. \mforall{}[a,b:Point]. \mforall{}[c:\{c:Point| a \# c\} ]. \mforall{}[d:\{d:Point|
StrictOverlap(a;b;c;d)\} ].
(CC(a;b;c;d) \mmember{} \{u:Point| ab \mcong{} au \mwedge{} cd \mcong{} cu \mwedge{} u leftof ac\} )
Date html generated:
2020_05_20-AM-09_43_39
Last ObjectModification:
2019_12_03-AM-09_53_19
Theory : euclidean!plane!geometry
Home
Index