Nuprl Lemma : geo-SC_wf

[g:EuclideanPlaneStructure]
  ∀c,d,a:Point. ∀b:{b:Point| a ∧ B(cbd)} .  (SC(a;b;c;d) ∈ {u:Point| cu ≅ cd ∧ B(abu) ∧ (b  u)} )


Proof




Definitions occuring in Statement :  geo-SC: SC(a;b;c;d) euclidean-plane-structure: EuclideanPlaneStructure geo-congruent: ab ≅ cd geo-between: B(abc) geo-sep: b geo-point: Point uall: [x:A]. B[x] all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]} 
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] geo-SC: SC(a;b;c;d) and: P ∧ Q euclidean-plane-structure: EuclideanPlaneStructure record+: record+ record-select: r.x subtype_rel: A ⊆B eq_atom: =a y ifthenelse: if then else fi  btrue: tt prop: or: P ∨ Q exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] sq_exists: x:A [B[x]] implies:  Q

Latex:
\mforall{}[g:EuclideanPlaneStructure]
    \mforall{}c,d,a:Point.  \mforall{}b:\{b:Point|  b  \#  a  \mwedge{}  B(cbd)\}  .
        (SC(a;b;c;d)  \mmember{}  \{u:Point|  cu  \mcong{}  cd  \mwedge{}  B(abu)  \mwedge{}  (b  \#  d  {}\mRightarrow{}  b  \#  u)\}  )



Date html generated: 2020_05_20-AM-09_43_43
Last ObjectModification: 2019_12_03-AM-09_53_17

Theory : euclidean!plane!geometry


Home Index