Nuprl Lemma : geo-add-length-property3
∀g:EuclideanPlane. ∀p,q:{p:Point| B(OXp)} .  (B(Xpq) 
⇒ p + |pq| ≡ q)
Proof
Definitions occuring in Statement : 
geo-add-length: p + q
, 
geo-length: |s|
, 
geo-mk-seg: ab
, 
geo-X: X
, 
geo-O: O
, 
euclidean-plane: EuclideanPlane
, 
geo-eq: a ≡ b
, 
geo-between: B(abc)
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
, 
euclidean-plane: EuclideanPlane
, 
prop: ℙ
, 
geo-add-length: p + q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
basic-geometry: BasicGeometry
, 
and: P ∧ Q
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
uiff: uiff(P;Q)
, 
basic-geometry-: BasicGeometry-
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}p,q:\{p:Point|  B(OXp)\}  .    (B(Xpq)  {}\mRightarrow{}  p  +  |pq|  \mequiv{}  q)
Date html generated:
2020_05_20-AM-09_59_34
Last ObjectModification:
2020_01_13-PM-03_44_06
Theory : euclidean!plane!geometry
Home
Index