Nuprl Lemma : geo-between-outer-trans
∀e:BasicGeometry-. ∀[a,b,c,d:Point].  (B(acd)) supposing (B(bcd) and B(abc) and b # c)
Proof
Definitions occuring in Statement : 
basic-geometry-: BasicGeometry-, 
geo-between: B(abc), 
geo-sep: a # b, 
geo-point: Point, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
geo-between: B(abc), 
and: P ∧ Q, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
subtype_rel: A ⊆r B, 
guard: {T}, 
prop: ℙ, 
basic-geometry-: BasicGeometry-, 
euclidean-plane: EuclideanPlane, 
or: P ∨ Q, 
stable: Stable{P}, 
geo-eq: a ≡ b, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
exists: ∃x:A. B[x]
Latex:
\mforall{}e:BasicGeometry-.  \mforall{}[a,b,c,d:Point].    (B(acd))  supposing  (B(bcd)  and  B(abc)  and  b  \#  c)
Date html generated:
2020_05_20-AM-09_51_41
Last ObjectModification:
2020_01_13-PM-03_25_03
Theory : euclidean!plane!geometry
Home
Index