Nuprl Lemma : geo-colinear-cong-tri-exists
∀[e:BasicGeometry]. ∀[a,b,c,a',c':Point].
  (Colinear(a;b;c) 
⇒ ac ≅ a'c' 
⇒ (¬¬(∃b':Point. (Cong3(abc,a'b'c') ∧ Colinear(a';b';c')))))
Proof
Definitions occuring in Statement : 
geo-cong-tri: Cong3(abc,a'b'c')
, 
basic-geometry: BasicGeometry
, 
geo-colinear: Colinear(a;b;c)
, 
geo-congruent: ab ≅ cd
, 
geo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
basic-geometry: BasicGeometry
, 
euclidean-plane: EuclideanPlane
, 
basic-geometry-: BasicGeometry-
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
geo-cong-tri: Cong3(abc,a'b'c')
, 
guard: {T}
, 
uimplies: b supposing a
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
stable: Stable{P}
, 
geo-eq: a ≡ b
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
l_all: (∀x∈L.P[x])
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
squash: ↓T
, 
true: True
Latex:
\mforall{}[e:BasicGeometry].  \mforall{}[a,b,c,a',c':Point].
    (Colinear(a;b;c)  {}\mRightarrow{}  ac  \mcong{}  a'c'  {}\mRightarrow{}  (\mneg{}\mneg{}(\mexists{}b':Point.  (Cong3(abc,a'b'c')  \mwedge{}  Colinear(a';b';c')))))
Date html generated:
2020_05_20-AM-09_54_34
Last ObjectModification:
2020_01_13-PM-03_29_41
Theory : euclidean!plane!geometry
Home
Index