Nuprl Lemma : geo-colinear-cong-tri-exists

[e:BasicGeometry]. ∀[a,b,c,a',c':Point].
  (Colinear(a;b;c)  ac ≅ a'c'  (¬¬(∃b':Point. (Cong3(abc,a'b'c') ∧ Colinear(a';b';c')))))


Proof




Definitions occuring in Statement :  geo-cong-tri: Cong3(abc,a'b'c') basic-geometry: BasicGeometry geo-colinear: Colinear(a;b;c) geo-congruent: ab ≅ cd geo-point: Point uall: [x:A]. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q not: ¬A false: False all: x:A. B[x] subtype_rel: A ⊆B basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane basic-geometry-: BasicGeometry- prop: exists: x:A. B[x] and: P ∧ Q geo-cong-tri: Cong3(abc,a'b'c') guard: {T} uimplies: supposing a cand: c∧ B uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q or: P ∨ Q stable: Stable{P} geo-eq: a ≡ b geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) select: L[n] cons: [a b] subtract: m squash: T true: True

Latex:
\mforall{}[e:BasicGeometry].  \mforall{}[a,b,c,a',c':Point].
    (Colinear(a;b;c)  {}\mRightarrow{}  ac  \mcong{}  a'c'  {}\mRightarrow{}  (\mneg{}\mneg{}(\mexists{}b':Point.  (Cong3(abc,a'b'c')  \mwedge{}  Colinear(a';b';c')))))



Date html generated: 2020_05_20-AM-09_54_34
Last ObjectModification: 2020_01_13-PM-03_29_41

Theory : euclidean!plane!geometry


Home Index