Nuprl Lemma : geo-colinear-equidistant
∀e:BasicGeometry. ∀[a,b,c,p,q:Point].  (cp ≅ cq) supposing (ap ≅ aq and bp ≅ bq and Colinear(a;b;c) and a # b)
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry
, 
geo-colinear: Colinear(a;b;c)
, 
geo-congruent: ab ≅ cd
, 
geo-sep: a # b
, 
geo-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
geo-congruent: ab ≅ cd
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
prop: ℙ
, 
basic-geometry: BasicGeometry
Latex:
\mforall{}e:BasicGeometry
    \mforall{}[a,b,c,p,q:Point].    (cp  \mcong{}  cq)  supposing  (ap  \mcong{}  aq  and  bp  \mcong{}  bq  and  Colinear(a;b;c)  and  a  \#  b)
Date html generated:
2020_05_20-AM-09_52_38
Last ObjectModification:
2019_12_20-PM-08_44_58
Theory : euclidean!plane!geometry
Home
Index