Nuprl Lemma : geo-colinear-is-colinear-set
∀e:EuclideanPlane. ∀A,B,C:Point.  (Colinear(A;B;C) ⇒ geo-colinear-set(e; [A; B; C]))
Proof
Definitions occuring in Statement : 
geo-colinear-set: geo-colinear-set(e; L), 
euclidean-plane: EuclideanPlane, 
geo-colinear: Colinear(a;b;c), 
geo-point: Point, 
cons: [a / b], 
nil: [], 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
euclidean-plane: EuclideanPlane, 
member: t ∈ T, 
sq_stable: SqStable(P), 
squash: ↓T, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
uimplies: b supposing a, 
and: P ∧ Q, 
geo-colinear-set: geo-colinear-set(e; L), 
l_all: (∀x∈L.P[x]), 
top: Top, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
decidable: Dec(P), 
or: P ∨ Q, 
sq_type: SQType(T), 
select: L[n], 
cons: [a / b], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
l_member: (x ∈ l), 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
nat: ℕ, 
geo-colinear: Colinear(a;b;c), 
not: ¬A, 
subtract: n - m, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}A,B,C:Point.    (Colinear(A;B;C)  {}\mRightarrow{}  geo-colinear-set(e;  [A;  B;  C]))
Date html generated:
2020_05_20-AM-09_47_35
Last ObjectModification:
2019_11_15-AM-08_32_16
Theory : euclidean!plane!geometry
Home
Index