Nuprl Lemma : geo-colinear_functionality

e:EuclideanPlane. ∀a1,a2,b1,b2,c1,c2:Point.
  (a1 ≡ a2  b1 ≡ b2  c1 ≡ c2  (Colinear(a1;b1;c1) ⇐⇒ Colinear(a2;b2;c2)))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-colinear: Colinear(a;b;c) geo-eq: a ≡ b geo-point: Point all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q geo-colinear: Colinear(a;b;c) member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: rev_implies:  Q not: ¬A false: False

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a1,a2,b1,b2,c1,c2:Point.
    (a1  \mequiv{}  a2  {}\mRightarrow{}  b1  \mequiv{}  b2  {}\mRightarrow{}  c1  \mequiv{}  c2  {}\mRightarrow{}  (Colinear(a1;b1;c1)  \mLeftarrow{}{}\mRightarrow{}  Colinear(a2;b2;c2)))



Date html generated: 2020_05_20-AM-09_47_45
Last ObjectModification: 2019_11_12-AM-10_47_47

Theory : euclidean!plane!geometry


Home Index