Nuprl Definition : geo-cong-angle

abc ≅a xyz ==
  (((a ≠ b ∧ b ≠ c) ∧ x ≠ y) ∧ y ≠ z)
  ∧ (∃a',c',x',z':Point. (b_a_a' ∧ b_c_c' ∧ y_x_x' ∧ y_z_z' ∧ ba' ≅ yx' ∧ bc' ≅ yz' ∧ a'c' ≅ x'z'))



Definitions occuring in Statement :  geo-congruent: ab ≅ cd geo-between: a_b_c geo-sep: a ≠ b geo-point: Point exists: x:A. B[x] and: P ∧ Q
Definitions occuring in definition :  geo-sep: a ≠ b exists: x:A. B[x] geo-point: Point geo-between: a_b_c and: P ∧ Q geo-congruent: ab ≅ cd
FDL editor aliases :  geo-conga geo-conga

Latex:
abc  \mcong{}\msuba{}  xyz  ==
    (((a  \mneq{}  b  \mwedge{}  b  \mneq{}  c)  \mwedge{}  x  \mneq{}  y)  \mwedge{}  y  \mneq{}  z)
    \mwedge{}  (\mexists{}a',c',x',z':Point.  (b\_a\_a'  \mwedge{}  b\_c\_c'  \mwedge{}  y\_x\_x'  \mwedge{}  y\_z\_z'  \mwedge{}  ba'  \mcong{}  yx'  \mwedge{}  bc'  \mcong{}  yz'  \mwedge{}  a'c'  \mcong{}  x'z'))



Date html generated: 2019_10_16-PM-01_21_54
Last ObjectModification: 2018_11_07-AM-09_57_18

Theory : euclidean!plane!geometry


Home Index