Nuprl Lemma : geo-congruent-functionality-lemma

g:EuclideanPlane
  ((∀a,b,c:Point.  (a ≡  ac ≅ bc))
   (∀a1,a2,b1,b2,c1,c2,d1,d2:Point.  (a1 ≡ a2  b1 ≡ b2  c1 ≡ c2  d1 ≡ d2  a1b1 ≅ c1d1  a2b2 ≅ c2d2)))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-eq: a ≡ b geo-congruent: ab ≅ cd geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T guard: {T} uall: [x:A]. B[x] uimplies: supposing a and: P ∧ Q subtype_rel: A ⊆B prop:

Latex:
\mforall{}g:EuclideanPlane
    ((\mforall{}a,b,c:Point.    (a  \mequiv{}  b  {}\mRightarrow{}  ac  \mcong{}  bc))
    {}\mRightarrow{}  (\mforall{}a1,a2,b1,b2,c1,c2,d1,d2:Point.
                (a1  \mequiv{}  a2  {}\mRightarrow{}  b1  \mequiv{}  b2  {}\mRightarrow{}  c1  \mequiv{}  c2  {}\mRightarrow{}  d1  \mequiv{}  d2  {}\mRightarrow{}  a1b1  \mcong{}  c1d1  {}\mRightarrow{}  a2b2  \mcong{}  c2d2)))



Date html generated: 2020_05_20-AM-09_45_37
Last ObjectModification: 2020_01_27-PM-03_42_20

Theory : euclidean!plane!geometry


Home Index