Nuprl Lemma : geo-congruent-transitivity

e:EuclideanPlane. ∀[a,b,c,d,x,y:Point].  (ab ≅ xy) supposing (cd ≅ xy and ab ≅ cd)


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-congruent: ab ≅ cd geo-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a euclidean-plane: EuclideanPlane sq_stable: SqStable(P) implies:  Q subtype_rel: A ⊆B and: P ∧ Q squash: T geo-congruent: ab ≅ cd not: ¬A false: False guard: {T} prop:

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b,c,d,x,y:Point].    (ab  \mcong{}  xy)  supposing  (cd  \mcong{}  xy  and  ab  \mcong{}  cd)



Date html generated: 2020_05_20-AM-09_45_28
Last ObjectModification: 2019_11_13-AM-10_45_42

Theory : euclidean!plane!geometry


Home Index