Nuprl Lemma : geo-gt-prim-implies-le

e:EuclideanPlane. ∀a,b,c,d:Point.  (ab>cd  |cd| ≤ |ab|)


Proof




Definitions occuring in Statement :  geo-le: p ≤ q geo-length: |s| geo-mk-seg: ab euclidean-plane: EuclideanPlane geo-gt-prim: ab>cd geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q geo-le: p ≤ q geo-sep: b member: t ∈ T and: P ∧ Q cand: c∧ B uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane exists: x:A. B[x] uiff: uiff(P;Q) squash: T true: True iff: ⇐⇒ Q geo-length-type: Length so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_lambda: λ2x.t[x] so_apply: x[s] respects-equality: respects-equality(S;T) or: P ∨ Q not: ¬A false: False stable: Stable{P} geo-eq: a ≡ b rev_implies:  Q sq_stable: SqStable(P) basic-geo-axioms: BasicGeometryAxioms(g)

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (ab>cd  {}\mRightarrow{}  |cd|  \mleq{}  |ab|)



Date html generated: 2020_05_20-AM-10_00_38
Last ObjectModification: 2020_01_28-AM-00_10_35

Theory : euclidean!plane!geometry


Home Index