Nuprl Lemma : geo-gt-prim-irrefl
∀g:EuclideanPlaneStructure. (BasicGeometryAxioms(g) 
⇒ (∀a,b,c,d:Point.  (ab>cd 
⇒ (¬cd>ab))))
Proof
Definitions occuring in Statement : 
euclidean-plane-structure: EuclideanPlaneStructure
, 
basic-geo-axioms: BasicGeometryAxioms(g)
, 
geo-gt-prim: ab>cd
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
guard: {T}
, 
basic-geo-axioms: BasicGeometryAxioms(g)
, 
and: P ∧ Q
, 
geo-ge: ab ≥ cd
Latex:
\mforall{}g:EuclideanPlaneStructure.  (BasicGeometryAxioms(g)  {}\mRightarrow{}  (\mforall{}a,b,c,d:Point.    (ab>cd  {}\mRightarrow{}  (\mneg{}cd>ab))))
Date html generated:
2020_05_20-AM-09_42_46
Last ObjectModification:
2020_01_24-PM-03_34_48
Theory : euclidean!plane!geometry
Home
Index