Nuprl Lemma : geo-inner-three-segment

e:EuclideanPlane. ∀[a,b,c,A,B,C:Point].  (ab ≅ AB) supposing (bc ≅ BC and ac ≅ AC and B(ABC) and B(abc))


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-congruent: ab ≅ cd geo-between: B(abc) geo-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a geo-congruent: ab ≅ cd not: ¬A implies:  Q false: False prop: and: P ∧ Q cand: c∧ B

Latex:
\mforall{}e:EuclideanPlane
    \mforall{}[a,b,c,A,B,C:Point].    (ab  \mcong{}  AB)  supposing  (bc  \mcong{}  BC  and  ac  \mcong{}  AC  and  B(ABC)  and  B(abc))



Date html generated: 2020_05_20-AM-09_49_41
Last ObjectModification: 2020_01_27-PM-10_03_39

Theory : euclidean!plane!geometry


Home Index