Nuprl Lemma : geo-intersect-LINE-iff-line

eu:EuclideanParPlane. ∀L,M:LINE.  (L \/ ⇐⇒ ∃l:{l:Line| L ∈ LINE} . ∃m:{m:Line| M ∈ LINE} \/ m)


Proof




Definitions occuring in Statement :  euclidean-parallel-plane: EuclideanParPlane geo-intersect: \/ M geoline: LINE geo-line: Line all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] euclidean-parallel-plane: EuclideanParPlane prop: rev_implies:  Q exists: x:A. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] geo-intersect: \/ M cand: c∧ B geo-line: Line pi1: fst(t) pi2: snd(t) sq_stable: SqStable(P) squash: T geo-incident: L uiff: uiff(P;Q)

Latex:
\mforall{}eu:EuclideanParPlane.  \mforall{}L,M:LINE.    (L  \mbackslash{}/  M  \mLeftarrow{}{}\mRightarrow{}  \mexists{}l:\{l:Line|  l  =  L\}  .  \mexists{}m:\{m:Line|  m  =  M\}  .  l  \mbackslash{}/  m)



Date html generated: 2020_05_20-AM-10_47_24
Last ObjectModification: 2020_01_13-PM-06_05_23

Theory : euclidean!plane!geometry


Home Index