Nuprl Lemma : geo-intersect-lines
∀e:EuclideanPlane. ∀p,l:Line.
  (p \/ l
  
⇐⇒ ∃a,b:Point
       (Colinear(a;fst(p);fst(snd(p)))
       ∧ Colinear(b;fst(p);fst(snd(p)))
       ∧ a leftof fst(l)fst(snd(l))
       ∧ b leftof fst(snd(l))fst(l)))
Proof
Definitions occuring in Statement : 
geo-intersect: L \/ M
, 
geo-line: Line
, 
euclidean-plane: EuclideanPlane
, 
geo-colinear: Colinear(a;b;c)
, 
geo-left: a leftof bc
, 
geo-point: Point
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
guard: {T}
, 
uimplies: b supposing a
, 
geo-line: Line
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
uiff: uiff(P;Q)
, 
oriented-plane: OrientedPlane
, 
l_member: (x ∈ l)
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
not: ¬A
, 
false: False
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
cand: A c∧ B
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
append: as @ bs
, 
so_lambda: so_lambda3, 
so_apply: x[s1;s2;s3]
, 
geo-colinear-set: geo-colinear-set(e; L)
, 
l_all: (∀x∈L.P[x])
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
geo-lsep: a # bc
, 
euclidean-plane: EuclideanPlane
, 
basic-geometry-: BasicGeometry-
, 
sq_stable: SqStable(P)
, 
geo-intersect: L \/ M
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}p,l:Line.
    (p  \mbackslash{}/  l
    \mLeftarrow{}{}\mRightarrow{}  \mexists{}a,b:Point
              (Colinear(a;fst(p);fst(snd(p)))
              \mwedge{}  Colinear(b;fst(p);fst(snd(p)))
              \mwedge{}  a  leftof  fst(l)fst(snd(l))
              \mwedge{}  b  leftof  fst(snd(l))fst(l)))
Date html generated:
2020_05_20-AM-10_45_55
Last ObjectModification:
2020_01_13-PM-05_50_24
Theory : euclidean!plane!geometry
Home
Index