Nuprl Lemma : geo-intersect-lines

e:EuclideanPlane. ∀p,l:Line.
  (p \/ l
  ⇐⇒ ∃a,b:Point
       (Colinear(a;fst(p);fst(snd(p)))
       ∧ Colinear(b;fst(p);fst(snd(p)))
       ∧ leftof fst(l)fst(snd(l))
       ∧ leftof fst(snd(l))fst(l)))


Proof




Definitions occuring in Statement :  geo-intersect: \/ M geo-line: Line euclidean-plane: EuclideanPlane geo-colinear: Colinear(a;b;c) geo-left: leftof bc geo-point: Point pi1: fst(t) pi2: snd(t) all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B prop: rev_implies:  Q exists: x:A. B[x] guard: {T} uimplies: supposing a geo-line: Line pi1: fst(t) pi2: snd(t) uiff: uiff(P;Q) oriented-plane: OrientedPlane l_member: (x ∈ l) nat: le: A ≤ B less_than': less_than'(a;b) not: ¬A false: False select: L[n] cons: [a b] subtract: m cand: c∧ B less_than: a < b squash: T true: True ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) append: as bs so_lambda: so_lambda3 so_apply: x[s1;s2;s3] geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) int_seg: {i..j-} lelt: i ≤ j < k geo-lsep: bc euclidean-plane: EuclideanPlane basic-geometry-: BasicGeometry- sq_stable: SqStable(P) geo-intersect: \/ M

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}p,l:Line.
    (p  \mbackslash{}/  l
    \mLeftarrow{}{}\mRightarrow{}  \mexists{}a,b:Point
              (Colinear(a;fst(p);fst(snd(p)))
              \mwedge{}  Colinear(b;fst(p);fst(snd(p)))
              \mwedge{}  a  leftof  fst(l)fst(snd(l))
              \mwedge{}  b  leftof  fst(snd(l))fst(l)))



Date html generated: 2020_05_20-AM-10_45_55
Last ObjectModification: 2020_01_13-PM-05_50_24

Theory : euclidean!plane!geometry


Home Index