Nuprl Lemma : geo-intersect-points-iff2

e:EuclideanPlane. ∀p1,p2,l1,l2:Point.
  (p1p2 \/ l1l2
  ⇐⇒ p1 p2
      ∧ l1 l2
      ∧ (∃a,b,c,d,v:Point
          (a-v-b
          ∧ c-v-d
          ∧ Colinear(a;p1;p2)
          ∧ Colinear(b;p1;p2)
          ∧ Colinear(c;l1;l2)
          ∧ Colinear(d;l1;l2)
          ∧ leftof cd
          ∧ leftof dc
          ∧ leftof ba
          ∧ leftof ab)))


Proof




Definitions occuring in Statement :  geo-intersect-points: ab \/ cd euclidean-plane: EuclideanPlane geo-colinear: Colinear(a;b;c) geo-strict-between: a-b-c geo-left: leftof bc geo-sep: b geo-point: Point all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] member: t ∈ T cand: c∧ B uall: [x:A]. B[x] subtype_rel: A ⊆B prop: rev_implies:  Q guard: {T} uimplies: supposing a geo-strict-between: a-b-c or: P ∨ Q

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}p1,p2,l1,l2:Point.
    (p1p2  \mbackslash{}/  l1l2
    \mLeftarrow{}{}\mRightarrow{}  p1  \#  p2
            \mwedge{}  l1  \#  l2
            \mwedge{}  (\mexists{}a,b,c,d,v:Point
                    (a-v-b
                    \mwedge{}  c-v-d
                    \mwedge{}  Colinear(a;p1;p2)
                    \mwedge{}  Colinear(b;p1;p2)
                    \mwedge{}  Colinear(c;l1;l2)
                    \mwedge{}  Colinear(d;l1;l2)
                    \mwedge{}  a  leftof  cd
                    \mwedge{}  b  leftof  dc
                    \mwedge{}  c  leftof  ba
                    \mwedge{}  d  leftof  ab)))



Date html generated: 2020_05_20-AM-10_04_45
Last ObjectModification: 2019_12_31-PM-09_38_41

Theory : euclidean!plane!geometry


Home Index